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INTRODUCTION 

A great amount of work has been devoted to the investigation of the phenomenon of the 
electrical explosion of a wire, and several models have been proposed to explain its physical 
mechanism (for example, [1-8]). The fact that there is no single generally accepted point 
of view indicates that with respect to the phenomenon of the electrical explosion of a wire, 
all is not yet clear. However, it cannot be disputed that the essence of the phenomenon of 
the electrical explosion of a wire is competition between two processes: the breakdown of the 
wire as a whole and the accompanying loss of electrical conductivity, on the one hand, and 
the evolution of Joule heat, on the other hand. Here the mechanism of the breakdown itself 
is determined by the rate of introduction of energy. With a very small rate of introduction, 
the breakdown of the wire takes place after its melting, as a result of the development of 
MHD instabilities. This process is comparatively slow (several hundred microseconds). If 
an energy corresponding to the point of its equilibrium boiling (or even greater) is intro- 
duced into the wire in considerably less time, new (more rapid) breakdown factors appear. 
Such a factor in [1-3] is the explosive volumetric boiling of a superheated liquid. In an 
MHD model [4], the loss of electrical conductivity is connected with the formation of con- 
strictions, dividing the liquid wire into individual disks (strata). In [5], a model con- 
sisting of surface vaporization waves, running from the periphery of the exploding wire to 
its center, is proposed. Each of these processes has its characteristic time. With a still 
greater rate of heating, there can be introduced into the wire an amount of energy sufficient 
for its total vaporization (or even an amount of energy corresponding to its critical state) 
before any of these factors can manifest itself [1-5]. For this case of an electrical explo- 
sion a model of a "metallized" plasma has been proposed [6]. With high rates of rise in the 
current and considerable diameters of the wire, there is the possibility (in principle) of ~ 
conditions of the explosion of a skin-layer [7]. In [8] the problem of the electrical explo- 
sion of a wire was solved on the basis of the equation of state of copper. With this ap- 
proach, the density (and, consequently, also the conductivity) of the metal of the exploding 
wire with a given specific energy is the greater, the greater the rate of introduction of 
energy. 

From what has been said it is clear that the moment of an electrical explosion and its 
physical mechanism are determined by the rate of introduction of energy. In [3], there was 
observed a change in the character of an electrical explosion as a function of the rate of 
heating of the liquid phase. The present article poses the problem of the determination of 
this rate from the initial conditions of the experiments. 

I. Model of Quasi-Steady-State Heating 

This model is the simplest and is based on the fact that the resistance of the wire is 
determined only by the value of the energy introduced into it due to Joule heating. From it 
there follows [9], where an analytical solution was found for the current and resistance of 
the exploding wire. This solution, however, is suitable only for the solid phase and for a 
time less than a quarter of the period of the discharge current. The same model was used in 
[I0] for deriving equations describing the solid stage and melting. All of the stages of the 
electrical explosion of a wire can be calculated using the model of [8] by integration of the 
equations of hydrodynamics. In the present article, the relative (in fractions of the period 
of the LC-loop) duration of the three initial stages is found: solid, transitional (melting), 
and liquid [heating of the melt up to the boiling pqint as a function of two dimensionless 
parameters (the Q-factor q and the initial energy Q~)]. Knowing the period of the loop T, we 
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can go over from the relative duration to the dimensional, i.e., we can determine the rate 
of introduction of energy, and this makes it possible to determine at what (approximately) 
moment of time and due to what factor the model of quasi-steady-state heating breaks down 
with given initial conditions. The exact determination of the breakdown of the model of 
quasi-steady-state heating must be carried out experimentally in each actual case. With 
exactly the same values of q and Q~, this breakdown can set in different stages, depending 
on T: starting from the moment immediately after the melting point (with large values of T) 
and ending with the time after the melting point, that corresponds to superheating of the 
melt (with small values of T). Up to the moment of breakdown, the model of quasi-steady- 
state heating gives an approximate description of the initial stages of the electrical explo- 
sion of a wire and makes it possible to calculate them very simply before setting up an ex- 
periment. This possibility is also of importance in practice, since at the present time 
there are two known methods for a computer calculation [8, ii]; however, the first is rather 
complicated, and the second describes only the concluding stage. 

2. Equations and Dimensionless Criteria of Process of Quasi-Steady-State Heating 

The process of quasi-steady-state heating of a wire in an LC-loop is described by the 
equations 

t 

i S idt ,  Uc = L i  I ~ r i ,  Ur = U o - -  -~- 
0 

r = r o l ( Q ) ,  Q' = r i  ~, 

where U c is the voltage in the condenser; Uo = Ucit=o; i is the current in the circuit; L is 
the total inductance in the loop (we assume it to be constant); r is the resistance of the 
exploding wire (the resistance of the loop is taken equal to zero); ro = rlt=o; Q is the 
energy absorbed by the wire; a prime denotes differentiation with respect to the time. We 
introduce into the discussion the following dimensionless quantities: T = ~/~-C; the func- 
tions i* = i/io, U* = Uc/Uo, and r* = r/ro (a dimensionless function determining the rise of 
the resistance with the energy); and the two parameters q = p/ro (the Q'factor) and Q~ = 8cu~/ 
(2m) (the initial energy); here io = Uo/P; p = /L7C; 8 is the thermal coefficient of the 
resistance of the wire in the solid stage; and m is the mass of the wire. 

The system of equations is then brought into the form 

di*/dT = U* - -  ( t ~ ) r * ~ * ;  ( 2 . 1 )  

dU*/d~  = - -  l*; ( 2 . 2 )  

dr*/d~ = F(r*)r* i  *~. ( 2 . 3 )  

Equation (2.3) was obtained by differentiation of r* with respect to the time with a 
transition to dimensionless quantities and the introduction of the notation F~*) = roi~L/~6r*' 
[since Q is expressed in terms of r* from the equality r* = f(Q)]. The dependences r*(Q) for 
the metals Cu and AI, plotted in accordance with the data of [12], are given in Fig. i. The 
numerical integration of Eqs. (2.1)-(2.3) was done on an electronic computer. For the solid 
andtransitional stages, a modified Euler method with an iterational analysis of each value 

722 



I t 1 1 1 1  I ] I I i I 

,' / I ' ' ' I H  ' ' ' [ ' I ./01 I| l l l l [  I I I I I 
I i l l l l l  I t  I I I 

| 1 II I t11111 U ; t 
~ I I I I l l l l l  ~0{=~ 

81i\ [ , l i B ] I l l  
I ]~1111111 1~ ! 

I ~, I Y I IIL'-~ III 

I \ !  l~.l lllR I l 

I '~ I I~u.  l l \  I I\1 
,~k I\ I t~lllll \ I I 

l ~ I [ \1 I t !~1111 \ I I I\1 

I k l  I I l~ i  k I I 

ii~ ] i 11111 

lli 
I I I I I l l  

Ill I I I IlL] 
ttl I i I t l  
tH I I I t i l l  
HI I I I I Il~ 
W~ i I I I IH 

I I I I l l l  
I ! ] J i l l  
t I I IIH 

ili ! I I t l l i  

I I ! l t l i  
Ill ! I I I I I l  
III I I I ! t l l  

Ill , !l,,,I , I ] I j l l l  

2 • . _ • r  IIIIK I\1 I I NIII  1.~1111 
i t ~ ' g ' k l l l l l ' x l  'N.I l l l ~  ] l~.~'IllJ~1 
�9 ~ N Ir'i,Lll " k l  P ' i , , . L I I ~  
~o01 I~Mdj 

0 t  ~ i I l l  ,13"~  ' _ . . . . . .  I I ; ;ill; 

o,o~ o, ~ ~,o ~oq 

Fig. 3 

T 

[ xd  } X ; i i I ! l  x. I I I ~ i l i l l l  I I I I ~ l ~  
I I I l ] [ l l l    g ffH!l',L I l N.IIi. ,, ,,iiH, 

! \ l ~ k ! l N l !  IN i l I I I ~  I I I l i i i i l  

i ~  1\1 I IPMt  %.1 �9 I I o l i l  ~ I 

I 1 i~<~'f i 1 ill I ll]  'k 
( 1 I l l l ' ~ l ~  Ii X I~  1]IN ~ ] Ii l l l i ~  I 
] ] [ l l l i l  % I I~1 X l l i l i ' ~  , f f O ~  

I l t l i  %1 I M  I~k l l l l  " ~ ' r - 4 - - - t ~ I ~ l H i  

I Illlil ,oo  
o,o~ 0,r ~,o ~oc~ 

Fig. 4 

of the function was used. For the liquid stage, use was made of a prograramed KESSA complex, 
designed for the analysis of electronic schemes and involving an implicit method of integra- 
tion [13]. The condition for stopping the calculation was the attainment of a value of r* 
corresponding to the end of the given stage. 

3. Heating of Solid Phase up to Melting Point 

Neglecting the insignificant (within the limits of 2%) effect of a change in the dimen- 
sions of the wire with the temperature on the value of the resistance, for f(Q) we obtain 
the expression 

r* = l + ~ Q l m ,  

where $ = ~Icp is the thermal coefficient and ~ the temperature coefficient of the resistance; 
Cp is the specific heat capacity of the metal (the mean for the temperature interval of the 
solid stage). We have 

f (r*) = roi~ l/-ffC s = 2 Q~, m q 
(3.1) 

dr* 2 Qo r* 
dt  q 

From Eqs. (2.1)-(2.3) and (3.1) it can be seen that the process is determined by the two 
dimensionless parameters q and Q~. The dimensionless duration of the solid stage TS, found 
as a result of the numerical integration of Eqs. (2.1), (2.2), and (3.1) for Cu and AI, is 
shown as a function of q and Q~ in Figs. 2 and 3. The minimum of TS (i.e., the maximum of 
the mean power of the Joule heat) depends on Q~ and lies in the interval from q = 0.2 to q = 
2. In other words, the power is maximal in the case where the resistance of the exploding 
wire is equal in order of magnitude to the wave resistance of the loop. 

4. Melting 

Assuming a model of surface melting, and assuming the solid and liquid phases to be 
wires connected in parallel, for the resistance we obtain 

w h e r e  r ~  = r s / r o  ; r S i s  t h e  r e s i s t a n c e  o f  t h e  s o l i d  w i r e  a t  t h e  m e l t i n g  p o i n t ;  PS a n d  PL a r e  
t h e  s p e c i f i c  r e s i s t a n c e s  o f  t h e  p h a s e s  a t  t h e  m e l t i n g  p o i n t ;  L t a n d  A V / V  a r e  t h e  s p e c i f i c  
h e a t  a n d  t h e  r e l a t i v e  i n c r e a s e  i n  t h e  v o l u m e  w i t h  a p h a s e  t r a n s i t i o n ;  a n d  Q i s  t h e  h e a t  
evolved in the melting stage. From (4.1) we find 

d T  = t I - -  + , . . 3 i . 2 .  

(4.2) 
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= 0.48, L t = 0 . 2 1  kJ/g, AV/V = 4.5%, $ = 10.5 g/kJ, 

5.96 
r* = i-- 2:370/,n (Q/m'  k I / g ) ,  

dr_** ~- 0 , 0 7 6  Q _ ~ r , a i , 2 .  
dz q 

For AI, r~ : 4.32, pS/PL : 0.61, L t : 0.38 kJ/g, AV/V : 6.6%, $ : 5.2 g/kJ, 

7'* = 4.32 dr* 0.082 Po r,3i,.~ 
i -- 0 . 9 2 Q / m '  d"~" = ~ -  " 

The duration of the melting stage Zmt as a function of the Q-factor q and the initial energy 
Qo* (Figs. 4 and 5) was determined by integration of Eqs. (2.1), (2.2), and (_4.2). 

5. Heating of Liquid Phase up to Boiling Point 

In this stage the effect of the temperature change in the dimensions of the exploding 
wire is considerable. We shall assume that the length of the wire is unchanged and that the 
increase in the volume takes place through the transverse cross section; the expression for 
r* can then be written in the form I~ r * = r [  1 +  T ' 

i w ~vQ/m 

where $p : ap/Cp; ~V : aV/Cp; rL is the resistance of the liquid wire at the melting point; 
~V is the coefficient of volumetric expansion of the liquid phase; and ap is the temperature 
coefficient of p. 

From this we have 

For Cu 

Cu 

,,,.>=2ooov ,L ,.): 
q ~ ~ p / ~ . - t  r L 

d-7 -?- -C Pp/Pv- ~ ~ ~L / 

r162 

r L = i i . 9 ,  ~ p  = - -  % = e ' 3 8 " i O - S  = 0 . 8 1  g f 4 ,  
cp 0,47.i03 

~ v  -----------tzv t"28"t0--~ = 0 . 2 7 2  g / k L  
cp 0 . 4 7 . 1 0  a 

1 ' 
t "4- "O.272Q/m 

(s.1) 
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0,9 /, ; 

Q/m, kJ/g 

d-~ = 0.311 2 . 9 8 - -  . r*i *=. 

For AI 

~176 = 0,49 g/kL 
A1 r L = 6 . 7 ,  8 0 =  i.08.i0s 

i .2.iO - ~  
i ~ v  = t.08.t03 = 0.111 g/kL 

r* = 6 ,7  t +  , i ' 

t 70. i l lQ/m 

dr* __ 0 , 0 8 4  Qo (4.41 -- ~*~ r* i  *~ 
dr q 6.7] " 

Here ~V = 1.28-i0-" I/~ for Cu was taken from [i0], and ~V = 1.2.10-" I/~ for A1 was cal- 
culated from the data of [14] from the dependence of the density of liquid A1 on the tempera- 
ture. The duration of the liquid stage TL, found by integration of (2.1), (2.2), and (5.1), 
is shown in Figs. 6 and 7. 

6. Deviations of the Initial Stages of theElectrlcal Explosion 
of a Wire from the Model of Quasi-Steady-State Heating 

Deviations arise both with too rapid, as well as with too slow, introduction of energy. 
In the first case they are connected with the appearance of temperature gradients over the 
cross section of the exploding wire as a result of the flow of heat to the phase interface 
during the melting period. According to [15], the value of the deviation is determined by 
the ratio 62 of the relaxation time of the temperature h~/X to the time of a phase transition 
with quasi-steady-state heating Ltn/(f~pt), where ho is the thickness of the foil; X is the 
thermal diffusivity; n is the specific density; and f~ and Pt are themean (for the melting 
stage) values of the square of the current density and the specific resistance, It is shown 
in [15] that for 82 = 1.9 the process is very close to quasi-steady-state heating ~= § 0), 
while for 82 = 30 it differs very little from the limiting value (82 § ~). A limitingly rapid 
introduction of energy corresponds to a situation in which the dependence of the resistance 
of the exploding wire r* on Q/m in the "melting stage ''% becomes linear and is a prolongation 
of the linear dependence for the solid stage. Since the dependence of r* on Q/m for A1 in 
the melting stage (see Fig. I) differs only slightly from the linear part corresponding to 
the solid stage, in this case the rate of introduction of energy will have no significant 
effect on the process up to the boiling point. This is confirmed by a comparison of calcu- 
lated and experimental data made in [16]: With an insufficiently rapid introduction of energy, 
the curves of r*(Q/m) differ only insignificantly. For Cu this effect should be stronger, 
but, as can be seen from Fig. I, with moderate values of the rate of introduction (~2 & 15) 
deviations from the model of quasi-steady-state heating of ~16% are to be expected. In addi- 
tion, the shift of the curve of r*(Q/m)downwardfrom quasi-steady-state heating, due to a rate 

%In this case melting does not take place, in spite of the sufficient value of the energy 
introduced, since the substance is not able to expand and decrease its density. Such a state 
of a "heated crystal" is metastable. 
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of introduction of energy differing from zero, should be compensated to a certain degree by 
the instability of thephase interface [15]. Figure 8 gives calculated (according to a model 
of quasi-steady-state heating) and experimental results for Cu right up to the melting point. 
An electrical explosion of a foil with a thickness of 43.10 -6 m was carried out in an LC-loop 
with a period of T = 6.7,10 -~ sec. The calculated curve was plotted from the starting data, 
and the experimental points were obtained from an analysis of oscillograms of the current and 
the voltage drop in the foil. It can be seen that the greatest deviations from the model of 
quasi-steady-state heating are actually observed in the transitional stage; in the solid and 
liquid stages the deviations are not great. 

The deviations from the model of quasi-steady-state heating with slow introduction of 
energy are connected with the development of bending MID instabilities [3, 4] and with the 
nonuniform nature of the heating of the wire up to the melting point due to the presence of 
inhomogeneities of structural and mechanical origin in the wire [3j. These inhomogeneities 
can lead to local volumetric melting and vapor formation and, as noted in [16J, have a ten- 
dency to grow across the lines of the current. Figure 9 gives the dependences r*r for 
aluminum foil with a thickness of i0 -s m, corresponding to the attainment of the melting point 
after a time of 0.9 and 1.5 ~sec (curve 1 and 2, respectively). These curves were obtained 
by averaging over a series of experiments under exactly the same conditions. The scatter of 
the data was within the limits of the accuracy of the measurements ~i0%). The lower the 
rate of introduction of energy, the greater the scatter of the data. In Fig. 9, points 3-6 
denote four different experiments under exactly the same conditions. There was a sharp rise 
in the resistance before the attainment of the melting point at the moment of time t ~ 13 
~sec, and there was a characteristic surge on the oscillogram of the voltage. It can be seen 
from these experiments that the slower the energy is introduced, the greater the degree to 
which the resistance of the exploding wire is determined by the development of inhemogeneities 
Furthermore, since the initial inhomogeneities and their development obviously have a random 
character, the scatter of the experimental data is increased. 

A third factor which can bring about deviations from the model of quasi-steady-state 
heating is the skin effect. It is well known that the skin effect is practically absent 
with the condition d << ~s, where d is the diameter (or thickness) of the wire and ~s = 
~2/(~) is the thickness of the skin layer. In ordinary experiments on the electrical ex- 
plosion of a wire this condition is satisfied [4J. 

The authors express their thanks to A. P. Baikov and A. F. Shestak for kindly furnishing 
the experimental data, as well as to Yu. V. Bondarenko for his aid in the computations. 
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PHASE VELOCITIES AND DISCONTINUOUS STRUCTURE OF SHOCK WAVES 

O. I. Dementii and S. V. Dementii UDC 533.951 

w The problem of the structure of a shock wave consists in the search for the solu- 
tion Uk(X , t) = Uk(X -- Ut) (k = i, ..., n) of a system of quasillnear equations of the form 

O A i (u)+ ~ [B~ (u) -  ~ -~xauk1.1 -at ~c~ (u) I = 0, i = I, .... , m, (i. i) 
k=I 

0 0 
"~ Ai(u)+'~Bi(u)=O, i=m-~-1 ..... n, 

with the boundary conditions duk/dX]x=~ = 0, where u = {Uk }n is the set of parameters char- 
acterizing the state of the medium and {~k} m are the dissipative coefficients. 

The extreme complexity of this problem, which arises largely due to the possibility of 
existence of segments of irregular behavior of the solution, does not permit the solution in 
its general formulation. At the same time, the determination and elimination of the irregu- 
lar segments can appreciably simplify the problem. Such irregularities appear in the form 
of nonphysical segments in the solution, which generally correspond to regions of multivalued: 
hess of some functions Uk(X ). The nonphysical segment in a formal mathematical solution must 
be replaced by a discontinuity, as usually done in hydrodynamics or magnetohydrodynamics in 
the study of shock waves [1-5]. It has been noted in a number of studies that an internal 
discontinuity appears in the case when the flow velocity in the wave goes through a certain 
critical value [2, 6-9]. Furthermore, it is shown that the critical velocity is the phase 
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